NETL's Phase II Mercury Technology Field Testing Program

November 20, 2003

Scott Renninger srenni@netl.doe.gov 304-285-4790 U.S. Department of Energy National Energy Technology Laboratory

Purpose

The purpose of this solicitation was/is to receive quality applications to perform long-term, large-scale field-testing of promising mercury control technologies at existing power plants firing a variety of coal ranks.

Solicitation Development/Structure

 Held two workshops to obtain stakeholder input (6/4/02 & 9/12/02):

Proposals Due:

Closing Date 1: April 7, 2003

Closing Date 2: April 30, 2004

focusing on Powder River Basin, Texas lignite, or coal blends

Cost-sharing

3/4 **DOE**

1/4 Proposing Team

Requested multi-site proposals with integrated project team

Selections-Closing Date 1

- Total of 8 selections with 14 unique sites (16 units)
 - Bituminous 5
 - 2 Med/High Sulfur Eastern
 - 3 Low Sulfur Eastern
 - Subbituminous 2
 - Lignite 5
 - 4 ND
 - 1 Tx
 - Blends 2
- No policy factors were applied

DOE/NETL Phase II Mercury Control Field Test Planning Matrix*

	ESPc (Small)	ESPc (Med)	FF	SD/FF	TOXECON	ESPc/ FGD	ESP/SCR FGD
East Bit Hi S	YY	?	X	X	Y but N/A	Y	X
East Bit Low S	YY	?	X	X	Y (long-term)	Y	X
Sub Bit	X	YY	Y #	Y*	Y but N/A	Y ##	Y ##
ND Lig	X	?	X	Y*	Y but NA	Y	N/A
TX Lig	X	X	X	Y*	Y	Y##	Y ##
W Bit	X	X	Y #	?	Y but N/A	Included in Sub Bit	Included in Sub Bit
Blends							

Y = yes (i.e., conduct field test). * = low Cl. # = either fuel; ## = either configuration

YY = possible multiple tests needed

? = maybe (e.g., how many plants on E. Bit with just ESPc)

E = existing test

Small: SCA < 200 ft2/kacfm; Medium: SCA = 200-350 ft2/kacfm N/A = not available; X = not critical need - low interest or N/A

^{*} Reference: June 2002 DOE/NETL stakeholder meeting at Air Quality IV conference.

DOE/NETL Phase II Mercury Control Field Test Selected Projects

	ESPc (Small)	ESPc (Med)	FF	SD/FF	TOXECON	ESPc/ FGD	ESP/SCR FGD
East Bit Hi S	YY	?	X	X	Y but N/A	Y	X
East Bit Low S	YY	?	X	X	Y (long-term)	Y	X
Sub Bit	X	YY	Y #	Y*	Y but N/A	Y ##	Y ##
ND Lig	X	?	X	Y*	Y but NA	Y	N/A
TX Lig	X	X	X	Y*	Y	Y##	Y ##
W Bit	X	X	Y #	?	Y but N/A	Included in Sub Bit	Included in Sub Bit
Blends							

Y = yes (i.e., conduct field test). * = low Cl. # = either fuel; ## = either configuration

YY = possible multiple tests needed

? = maybe (e.g., how many plants on E. Bit with just ESPc)

E = existing test

Small: SCA < 200 ft2/kacfm; Medium: SCA = 200-350 ft2/kacfm N/A = not available; X = not critical need – low interest or N/A

DOE/NETL Phase II Mercury Control Field Test Selected Projects

	ESPc (Small)	ESPc (Med)	FF	SD/FF	TOXECON	ESPc/ FGD	ESP/SCR FGD
East Bit Hi S	YY	?	X	X	Y but N/A	Conesville	X
East Bit Low S	Miami Fort 6 Yates 2	Buck/Allen	X	X	Y (long-term)	Yates 1 Yates 1 Marshall	X
Sub Bit	X	Meramec	Y #	Y*	Y but N/A	Y ##	Y ##
ND Lig	X	Leland Olds 1 Stanton 1	X	Antelope Valley 1 Stanton 10 Stanton 10	Y but NA	Milton Young 2	N/A
TX Lig	X	X	X	Y*	Y	Monticello 3 Monticello 3	Y ##
W Bit	X	X	Y #	?	Y but N/A	Included in Sub Bit	Included in Sub Bit
Blends		Nanticoke St. Clair Leland Olds 1		Holcomb			

Y = yes (i.e., conduct field test). * = low Cl. # = either fuel; ## = either configuration

YY = possible multiple tests needed

? = maybe (e.g., how many plants on E. Bit with just ESPc)

E = existing test

Small: SCA < 200 ft2/kacfm; Medium: SCA = 200-350 ft2/kacfm N/A = not available; X = not critical need – low interest or N/A

Sorbent Injection
Oxidation
Sorbent & Oxidation

^{*} Reference: June 2002 DOE/NETL stakeholder meeting at Air Quality IV conference.

DOE/NETL New Phase II Mercury Control Field Test Projects

Project Title	Lead Company	Test Schedule	Host Utility	Test Location	Coal Rank	PM	FGD
		?	Sunflower Electric	Holcomb	PRB/Bit. Blend	FF	SDA
Evaluation of Sorbent Injection for	ADA-ES		Ontario Power	Nanticoke	PRB/Bit. Blend	ESP	
Mercury Control			AmerenUE	Meramec	PRB	ESP	
			AEP	Conesville	Bit.	ESP	Wet FGD
Amended Silicates for Mercury Control	ADA Technologies	?	Cinergy	Miami Fort 6	Bit.	ESP	
Sorbent Injection for Small ESP	URS Group	?	Southern	Yates 1	Bit.	ESP	Wet FGD
Mercury Control			Southern	Yates 2	Bit.	ESP w/ NH ₃ /SO ₃	
Pilot Testing of Mercury Oxidation	URS Group	?	TXU	Monticello 3	TX Lignite	ESP	Wet FGD
Catalysts for Upstream of Wet FGD Systems			Duke	Marshall	Bit.	ESP	Wet FGD
Evaluation of MerCAP for Power	URS Group	?	Great River Energy	Stanton 10	ND Lignite	FF	SDA
Plant Mercury Control			Southern	Yates 1	Bit.	ESP	Wet FGD
		?	Basin Electric	Leland Olds 1	ND Lignite	ESP	
Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired	UNDEERC		Great River Energy	Stanton 10	ND Lignite	FF	SDA
Systems	UNDEERC		Basin Electric	Antelope Valley 1	ND Lignite	FF	SDA
,			Great River Energy	Stanton 1	ND Lignite	ESP	
Mercury Oxidation Upstream of an	UNDEERC	?	Minnkota Power	Milton R. Young 2	ND Lignite	ESP	Wet FGD
ESP and Wet FGD	UNDEERC		TXU	Monticello 3	TX Lignite	ESP	Wet FGD
Advanced Utility Mercury-Sorbent	Sorbent	?	Duke	Buck or Allen	Bit.	ESP	
Field-Testing Program	Technolgies		Detroit Edison	St. Clair	Bit./PRB blend	ESP	

Evaluation of Sorbent Injection for Mercury Control *ADA-ES*

- Evaluate full scale sorbent injection with existing pollution-control equipment at four plants.
- Sunflower Electric's Holcomb Station burns PRB/Bit coal blend and equipped with SDA/FF
- Ontario Power's Nanticoke Station burns PRB/Bit coal blend and equipped with ESP
- AmerenUE's Meramec Station burns PRB and equipped with ESP
- AEP's Conesville Station burns bituminous coal and equipped with ESP and wet FGD

Amended Silicates for Mercury Control *ADA Technologies*

- Evaluate a new non-carbon sorbent, Amended SilicatesTM
- Avoid impact on fly ash sales.
- Full-scale testing at Cinergy's 75-MW Miami Fort Unit 6 – burns bituminous coal and equipped with ESP.

Sorbent Injection for Small ESP Mercury Control URS Group

- Evaluate sorbents injected upstream of ESP with small specific collection area (SCA).
- Full-scale testing at Southern Company Services' Plant Yates Unit 1 & 2 – burns bituminous coal.
 - Unit 1 equipped with ESP and wet FGD.
 - Unit 2 equipped with ESP and NH₃/SO₃ conditioning.

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems URS Group

- Evaluate honeycomb catalyst system for oxidizing elemental mercury.
- Removal in downstream wet lime or limestone FGD systems.
- Pilot-scale testing conducted over 14 months at two plants.
- TXU Monticello Unit 3 burns Texas lignite.
- Duke Energy's Marshall Station burns low-sulfur bituminous coal.
- Both plants equipped with ESP and wet FGD.

Evaluation of MerCAP for Power Plant Mercury Control *URS Group*

- Evaluate EPRI's Mercury Control via
 Adsorption Process (MerCAPTM) technology.
- Regenerable, gold-coated fixed-structure sorbent.
- Mercury not contained in combustion byproducts.
- Testing at two plants over a six month period.
- Great River Energy's Stanton Unit 10 burns ND lignite coal and equipped with SDA/FF. (Full-scale at 6 MW equivalent)
- Southern Company Services' Plant Yates Unit
 1 burns bituminous coal and equipped with
 ESP and wet FGD. (Pilot-scale at 1 MW)

Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems *UNDEERC*

- Enhance effectiveness of activated carbon injection for plants burning low-rank lignite coals.
- Evaluate two different approaches:
 - Use of chlorine-based additive to coal and activated carbon sorbent.
 - Use of chemically treated sorbents.
- Full-scale testing at four units burning North Dakota lignite coal.
- Basin Electric's 220 MW Leland Olds Station Unit 1 equipped with ESP.
- Basin Electric's 440 MW Antelope Valley Station Unit 1 – equipped with SDA/FF.
- Great River Energy's 140 MW Stanton Station Unit 1

 equipped with ESP.
- Great River Energy's 60 MW Stanton Station Unit 10
 equipped with SDA/FF.

Mercury Oxidation Upstream of an ESP and Wet FGD UNDEERC

- Evaluate chloride-based additive to increase mercury oxidation upstream of ESP and wet scrubber.
- Full-scale testing at two plants burning lignite coal and equipped with both ESP and wet FGD.
- Minnkota Power Cooperative's Milton R. Young Unit 2 – burns ND lignite.
- TXU Monticello Unit 3 burns TX lignite.

Advanced Utility Mercury Sorbent Field-Testing Program Sorbent Technologies

- Evaluate novel sorbent.
- Full-scale testing at two plants.
- Duke Energy's Buck or Allen Station, both burn bituminous coal and equipped with ESP.
- Detroit Edison's St. Clair Station burns mixture of bituminous and subbituminous coal and equipped with ESP.

DOE Cost

		DOE TOTAL	\$18,979,659			
		FY DOE TOTAL	\$3,476,000	\$7,008,005	\$6,874,642	
		URS	\$ 576,000	\$ 500,000	\$ 37,262	
		Topic Area 4				
		UNDEERC	\$ 600,000	\$1,250,000	\$352,195	
		URS	\$	\$700,000	\$685,185	
		Topic Area 3				
		ADA Technologies	\$	\$500,000	\$300,000	
		URS	\$ 300,000	\$458,005	\$	
		Sorbent Technologies	\$600,000	\$1,400,000	\$1,000,000	
		UNDEERC	\$500,000	\$1,000,000	\$2,100,000	
		ADA ES	\$900,000	\$1,200,000	\$2,400,000	
Application	Selected	Applicant	DOE FY03 Funding	DOE FY 04 Funding	DOE FY05 Funding	

27.4% cost share